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The use of additive manufacturing systems in dentistry is becoming a widespread phenomenon. Additive manufacturing technology is 
defined as the fabrication of a 3D model or prototype by agglomerating the biomaterials layer by layer in a specific pattern dictated by 
the computer-aided design software. With the aid of this technology; structures with superior biocompatibility are rapidly, precisely, and 
inexpensively fabricated for direct medical utilization. In contemporary dentistry, manifold additive manufacturing techniques have been 
developed for the fabrication of fixed prosthetic restorations, removable dentures, surgical guides, individualized implants, custom impression 
trays, and anatomical models. Of these; stereolithography, selective laser sintering, selective laser melting, fused deposition modeling, and 
electron beam melting are commonly used. However, scientific data regarding their material options and working principles are still insufficient. 
Therefore, the aim of this review is to study the current status of common additive manufacturing techniques in prosthetic dentistry.
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INTRODUCTION
Additive manufacturing (AM), which is more colloquially known as either 3-dimensional (3D) printing or rapid prototyping 
(RP), was first expressed by Charles Hull in the late 1980s (1). The fundamental concept of additive manufacturing is to fab-
ricate a 3D model by depositing biomaterials layer by layer in a specific pattern dictated by the computer-aided design 
software (1-10). The popularity of AM techniques is deliberately increasing as they allow fast, precise, and cost-effective 
fabrication of highly customized functional structures for direct medical utilization (2). Moreover, the amount of waste is sig-
nificantly reduced (1). With all these opportunities, there is a considerable shift from standardized to personalized dentistry 
as manufacturing of custom structures including craniomaxillofacial implants, surgical guides, root-analogue implants, im-
pression trays, polymer-matrix composites, and anatomical models is feasible through this disruptive innovation (1-3). 

To date, numerous novel AM techniques have been developed which can present superior print qualities. The five leading 
technologies prominent in contemporary dentistry are stereolithography (SLA) (1-5, 7, 8, 10-14), selective laser sintering 
(SLS) (1-5, 9, 11), selective laser melting (SLM) (2, 3, 5, 9, 11), fused deposition modeling (FDM) (1-5, 7, 10, 11, 15), and electron 
beam melting (EBM) (2, 3, 9, 11). Each adopts different methods of fabrication. However, the fabrication process through 
AM technologies generally consists of several mutual stages including data acquisition, processing, segmentation, out-
putting, and post-processing (not necessary for every system) (3-5, 11). Digital data of the related structure can commonly 
be acquired via computerized tomography, conic-beam computerized tomography (CBCT), magnetic resonance imaging, 
and digital scanners (6, 7, 11). During processing, a 3D model is virtually designed by means of computer-aided design 
software and saved as either standard tessellation language file or as another proprietary formats (4, 6, 11). The process 
continues with the segmentation of the model into 2D layers (1). Subsequently, during outputting, sliced layers are stacked 
and fused together, thus processed data are printed out with the aid of additive-based printers (4). Last steps can be 
post-curing for complete polymerization and post-processing (7).

To the best knowledge of authors, the aforementioned common techniques have not been investigated extensively and 
therefore, data regarding this issue are scarce. In this review, it was aimed to set out the current status of most employed 
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additive manufacturing techniques in prosthetic dentistry by 
comparing their advantageous and disadvantageous properties. 
Material options and working principles were also scrutinized.

Am Techniques Extensively Used in Dentistry

Stereolithography
SLA technique allows the solidification of liquid photopolymer by 
using ultraviolet (UV) laser source. After converting the 3D digital 
model into 2D cross-sections, a coherent light source is emitted in 
a particular manner by specific points located in a photosensitive 
resin-containing platform, thus inducing selective photo-polym-
erization and forming the very first layer. The platform is then low-
ered into the vat by a one-layer thickness, allowing the liquid to 
cover the first layer. The same process is then repeated over and 
over again, until the intended 3D model is physically manufac-
tured (1-5, 7, 8). Laser scan speed, power, and exposure time can 
become influential on resolution and curing time (1). The resultant 
model is then removed from the platform and placed into an UV 
oven, in order to complete the curing process and thereby to meet 
the required physical properties (3) (Table 1). 

Selective Laser Sintering
SLS technique allows the creation of 3D models by consolidat-
ing consecutive layers of powdered materials. In this method, a 
laser beam (usually carbon dioxide laser or neodymium-doped 
yttrium aluminum garnet laser) with a controlled path scans 
the powder to sinter (to partially melt) it by heating (1-5). High 
power of laser allows the fusion of powder through molecular 
diffusion (1). After scanning, the powder platform is lowered by a 
one-layer thickness, typically between 20-100 µm depending on 
the type of device, and a new layer of powder is sprayed onto 
the previous one. The process is repeated until the completion of 
the 3D model (9) (Table 1).  

Selective Laser Melting
SLM technique can be considered as a variation derived from 
SLS, as the same steps are applied in both techniques, with the 
main difference being that SLM completely melts the powder 
particles with powerful laser beam in order to form fully dense 
metallic models (2, 3, 5) (Table 1).

Fused Deposition Modeling
FDM technique, also known as fusion filament fabrication (FFF), 
has a widespread use among AM technologies due to its relative 
inexpensiveness, high speed, and simplicity (1-4). This technique 

depends on the deposition of material in semi-liquid state through 
heat-producing nozzle that extrudes material in a specific path 
to form layer-by-layer a 3D model (7). The extrusion head heats 
the material. The molten viscosity has to be high enough to exhib-
it structural support and low enough to allow extrusion (to avoid 
clogging). In newer models, multiple nozzles that allow the use of 
multiple materials with different properties are present. Process-
ing parameters such as raster width, layer thickness, and raster 
angle can become influential on the printing quality (1) (Table 1).

Electron Beam Melting
From a technical standpoint, EBM and SLM share the same 
melting process of consecutive powder layers for fabricating 
the 3D model. However, EBM uses an electron beam instead of 
laser beam as a source of energy (2,5) (Table 1).

Current Applications in Prosthodontics

Printing of 3D casts
One of the earliest implementations of AM technology into prost-
hodontics was to acquire 3D printed casts based on digital im-
pressions, either for diagnostic purposes or to obtain definitive 
cast to manufacture dental prostheses (7). However, these print-
ed casts have to show accuracy levels at least similar to that of 
conventional ones in order to be beneficial to the dental practice. 
Several studies exist in the literature that compare the accuracy 
of 3D printed casts, conventional casts, and the casts produced 
by subtractive method (10, 12, 13). In this regard, Revilla-León et 
al. (10) assessed the capability of 4 different RP technologies 
to duplicate a fully edentulous model including 7 implant ana-
logues and to fabricate definitive casts for implant prostheses. 
It was highlighted that conventional dental stone casts could be 
accurately duplicated by using multi-jet printing and direct light 
processing technologies. Another study by Patzelt et al. (12) con-
cluded that SLA technology was superior for the fabrication of 
dental casts; although all of the investigated casts (SLA-based 
and milled) indicated clinically acceptable accuracy. On the other 
hand, Alshawaf et al. (13) found that 3D printed casts are inferior 
to their conventional counterparts in terms of surface finish, inter-
proximal space replication, and accuracy.  

Fabrication of Surgical Guides
Surgical guides are important during implantation for pinpoint-
ing the best location to drill. The placement of dental implants 
in the right position and at the right angle (surgical navigation) 
both increases the success rate of the procedure and minimizes 
the possibility of damage to the surrounding anatomical tissues 
(2, 3, 14). During fabrication, initially, data of the patient are ac-
quired with CBCT and intraoral scanner. Subsequently, digital 
processing and virtual planning through a computer-aided de-
sign (CAD) software are conducted (Figure 1). Consequently, 
surgical guide is produced with the aid of a computer-aided 
manufacturing (CAM) device (8). 

Surgical guide systems can be divided into static or dynamic. 
Stereolithography is the most commonly used technique as it al-
lows the production of high-precision transparent guides which 
facilitates the visualization of anatomical structures during the 
surgical procedure. Stereolithographic guides can be referred 
as static because they do not allow modification of the virtual-
ly-planned position during implant surgery (8).

Main Points:

• The AM techniques are very popular as they allow fast, 
precise, and cost-effective fabrication of highly custom-
ized functional structures for direct medical utilization.

• Of these AM techniques; stereo-lithography, selective 
laser sintering, selective laser melting, fused deposition 
modelling, and electron beam melting are in use in con-
temporary dentistry.

• These techniques have been developed for the fabrica-
tion of fixed prosthetic restorations, removable dentures, 
surgical guides, individualized implants, custom impres-
sion trays, and anatomical models.
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Fabrication of Custom Impression Trays
The utilization of 3D polymer modeling technologies in prost-
hodontics omits some manual, time-consuming processes such 
as the fabrication of custom trays for taking conventional im-
pressions (Figure 2). Moreover, by digitizing this process, a ho-
mogeneous space for the impression material can be achieved 
(7, 8). The ability of these trays for taking accurate, superior final 
impressions is also evident in the literature (15). Additionally, the 

fabrication of custom trays designed especially for maxillofacial 
prosthetics have also been proven to be feasible (16).

Fabrication of Removable Complete Dentures
Another earliest employment of AM technology is the fabrication 
of complete dentures in 1994, when Maeda et al. (17) described 
series of steps to manufacture a complete denture using light-
cured resin with the assist of an SLA machine. Since then, there 

TABLE 1. Material options, technical data, and approximate accuracy level of commonly used additive manufacturing modalities 

AM technique Material Options Advantages Disadvantages Accuracy

SLA • Acrylate photopolymer • High resolution and accuracy • High cost of machining ≈50-55 µm 
 • Plastic • Rapid fabrication and smooth • Requirement of post-processing 
 • Ceramics    surface finish      procedures 
  • Able to create complex parts with • Possible cytotoxicity of residual 
     fine details    photo-activator and uncured resin 
  • As being nozzle-free technique,  
     nozzle clogging can be avoided.  

SLS • Wax  • No support material is required • Sometimes, the powder-filled tank is ≈45-50 µm 
 • Polymers  • Good chemical resistance    preheated to reduce the power 
 • Polymer/glass composites • Parts possess high strength and    consumption by the laser source and 
 • Polymer/metal powders    stiffness    to avoid large thermal differences 
 • Metals  • High accuracy    between particles which can lead later 
 • Ceramics      to distortion/cracking in the final product  
   • Post-processing is sometimes needed. 
   • In terms of surface roughness, SLS  
      exhibits inferior results than SLA (4). 
   • Parts are porous.

SLM • Metals and metal alloys  • Superb accuracy • High energy is needed to melt powder. ≈20-35 µm 
    o Stainless steel  • Parts present full density and    particles which makes the process very 
    o Cobalt chromium alloy     excellent mechanical properties,    difficult to control. 
    o Nickel chromium alloy     compared to SLS (5). • Fluctuations in temperature between 
    o Titanium (Ti-6Al-4V) alloy • Able to create complex parts with     particles due to rapid laser scanning 
     fine details.    result in solid-liquid-solid phase  
      transformation. This may cause thermal  
      shock that leads to accumulation of residual 
      stress, distortion, shrinking or cracking. 
   • Depending on material, parts can be porous

FDM • Polylactic acid (PLA)  • Relative inexpensiveness • The surface finish is relatively poor. This may ≈35-40 µm 
 • Acrylonitrile butadiene  • High fabrication speed    be solved by polishing or sand-blasting. 
    styrene (ABS) • Simplicity, multi-material usage • High variation in temperature may cause 
 • Polycarbonate,  • Wide array for material colour    delamination. 
    Polypropylene  • PEEK material can be printed • Composites has to be in a filament form 
 • Polyesters  • Parts exhibit high strength    to be extrudable. 
 • Composites  

EBM • Metals • Vacuumed medium avoids • Vacuumed medium is expensive. ≈40-50 µm 
     impurities or any deflection of • This technology produces X-rays. 
      electrons by air molecules.  • The surface finish is relatively poor.  
  • The presence of well-fused powder     This may be solved by sand-blasting 
     can become beneficial as it reduces     the model using the same building 
     residual stresses in the final product     powder in order to avoid contamination. 
     and enhances mechanical  
     properties considerably.

FIGURE 1. Virtually designed surgical guide by correlating with CT data of patient (Design was conducted with a CAD software [InLab 15, Sirona 
Dental Systems, Bensheim, Germany])
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have been several depictions of different methods to incorporate 
AM technologies into the fabrication of removable complete 
dentures (7). There are several studies that investigated complete 
dentures fabricated with additive, subtractive, and conventional 
manners (18-20). According to Davda et al. (18), AM technique is 
superior to the conventional methods in terms of precision and 
accuracy. Inokoshi et al. (19) stated that the use of AM to produce 
trial wax dentures presents comparable results with convention-
al technique, and although further improvements are needed; ap-
plying RP technique to obtain trial dentures seems to be a prom-
ising method. To the best knowledge of authors, manufacture of 

dentures by using CAD/CAM techniques are considered to be a 
valid method as these dentures provide equal or better fit, analo-
gous biocompatibility, improved mechanical properties, and high 
patient/clinician satisfaction. The feasibility of employing AM 
techniques to manufacture definitive dentures is, however, ques-
tionable. A study by Kalberer et al. (20) reinforced this hypothesis 
by reporting that milled dentures were superior to printed ones in 
terms of trueness of intaglio surface.

Fabrication of Interim Dental Restorations
Different AM methods to manufacture interim crowns, bridges, or 
even fixed implant dentures have been described in the literature 
(8, 21, 22). Additionally, there are several studies that compared 
3D printed interim restorations with their milled and convention-
al counterparts. These studies supported the usability of such 
interim restorations based on their sufficient mechanical proper-
ties and acceptable marginal-internal fit values (23, 24). However, 
there is a necessity for additional studies regarding the polymers 
used in AM in terms of biocompatibility and long-term viability (8).

Printing of Castable Patterns
Several commercially available castable polymers are in use for 
AM technologies. These polymers are shaped with rapid tool-
ing to produce patterns for different restorations which can be 
casted using conventional methods to obtain metal or pressed 
lithium disilicate restorations (7). Several descriptions exist in the 
literature for employments of 3D printed patterns for the fab-
rication of several types of restorations such as inlays, onlays, 
crowns and bridges, frameworks for partial dentures, frame-
works for implant-supported prostheses, and even maxillofacial 
prostheses (9, 25-30). Though available, the aforementioned ap-
plications of printed patterns have to be investigated in order to 
verify their viability for replacing with conventional techniques. 
Inlays and onlays produced from printed patterns were found 
to have marginal and internal fit values that are clinically ac-
ceptable (27,  28). The marginal and internal fit investigations of 
casted, SLA printed-, and milled-patterns were conducted by 
Kim et al. (31). They concluded that all test groups have indicated 
clinically acceptable and comparable marginal-internal fit val-
ues, except milled copings. The fit of removable partial denture 
frameworks has also been investigated in the literature, and de-
spite the lack of sufficient clinical trials, the available evidence 
supports the fact that printed patterns provide enough fit to the 
frameworks for clinical applications (32). Regarding the frame-
works for implant-supported fixed dentures, Alikhasi et al. (30) 
have found that although frameworks casted from printed pat-

FIGURE 2. Custom tray (Design was conducted with a CAD software [InLab 15, Sirona Dental Systems, Bensheim, Germany])

FIGURE 3. Framework design of removable partial denture ready for 
3D-printing (Design was conducted with a CAD software [InLab 15, 
Sirona Dental Systems, Bensheim, Germany])

FIGURE 4. Full-ceramic indirect restoration designed for maxillary 
1. Molar (Design was conducted with a CAD software [InLab 15, 
Sirona Dental Systems, Bensheim, Germany])
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terns were inferior to the ones produced from milled patterns in 
terms of retention values; the amount of retention achieved by 
both groups was clinically acceptable. 

Polyetheretherketone (PEEK) is a thermoplastic, semi-crystalline 
polymer belonging to a family of linear aromatic polymers con-
taining ether and ketone linkages (33, 34). It presents acceptable 
composition of properties including good biocompatibility, chem-
ical resistance, good mechanical properties, and a low elastic 
modulus (3-4 GPa) which is analogous to the human cortical 
bone’s (14 GPa) (34). Some of the novel implementations of 3D 
printed polymers in dentistry is the indirect use of rapid prototyp-
ing to produce PEEK frameworks for the partial dentures through 
thermo-pressing of printed patterns. According to a study by 
Negm et al. (33), milled PEEK frameworks presented significantly 
better trueness in comparison to the ones fabricated with indirect 
AM technique. Nevertheless, both techniques have been found to 
possess enough fit values from a clinical standpoint.

Fabrication of Dental Implants 
The success of dental implants relies heavily on the location of 
important landmarks (mandibular nerve canal and maxillary si-
nus) and on the anatomic features of the alveolar bone, mainly 
the presence of ample bone tissue. Therefore, the idea of manu-
facturing individualized dental implants with specific dimensions 
for each patient can improve success ratios in patients with rel-
atively inadequate bone. The aforementioned concept has al-
ready become a feasible reality with the advent of AM as the 
incorporation of rapid manufacturing techniques into implant 
dentistry allows the manufacturing of highly customized dental 
implants (2,3,35). The introduction of SLM and EBM to the implant 
dentistry has unlocked several possibilities for the development 
of dental implants. Aside from customization, the concepts of os-
seointegration, titanium alloys, implants with special geometries 
are all aspects to be exploited thanks to the technologies that 
rapid manufacturing offers. 3D printed implants have features 
like micro-roughness, nano-roughness hydrophilic surfaces, and 
controlled porosity which can all improve the osseointegration 
process (36). Furthermore, the implementation of 3D printed im-
plants has already yielded good clinical results (37, 38). An ad-
ditional improvement that AM has to offer in the implantology 
sector is the use of a new additively manufactured implant ma-
terial based on Ti-42Nb alloy, as a substitute for the commercially 
available titanium alloy (Ti-6Al-4V). Schulze et al. (39) proved 
that the printed implants from this alloy have lower Young mod-
ulus when compared with standard implant materials, thus im-
proving the elastic compatibility with human bone.

The mixture of above-mentioned characteristics also makes PEEK 
a viable alternative to titanium and ceramics for applications in 
implant dentistry (3, 34). Mounir et al. (38) have conducted a study 
to evaluate highly customized 3D printed titanium and PEEK im-
plants for the rehabilitation of severely atrophic anterior maxil-
la. The results obtained from a 12-month follow-up showed the 
success of both titanium and PEEK implants. However, the use of 
PEEK as an AM material is fairly recent and although it seems 
promising; the current evidence in the literature that supports the 
use of 3D printed PEEK in implant dentistry is very scarce.

The production of zirconia implants through AM is also present 
in the literature (5). It has been demonstrated that printed cus-

tomized zirconia implants are feasible and can present accept-
able dimensional accuracy along with mechanical properties 
close to the conventionally manufactured ones (40). Additional-
ly, with the aid of advantages that material extrusion techniques 
can offer, it is possible to create zirconia-based customizable 
implants. The deposition of two different materials can produce 
implants in both dense and porous structures, which in turn can 
reduce the elastic modulus and favour osteointegration thanks 
to the presence of pores (41).

Fabrication of Metal Frameworks for Fixed Prostheses and Re-
movable Partial Dentures
Lost wax technique and the milling technique are both considered 
to be the traditional ways to produce metal frameworks for fixed 
partial restorations, removable partial dentures (Figure 3), and im-
plant-supported dentures. However, with the advent of additive 
manufacturing, the limitations of the milling technique can be omit-
ted as AM techniques waste minimum amount of material and can 
produce models with greater accuracy and detail (3, 4, 9, 11). 

The mechanical properties, marginal-internal fit, and dimension-
al accuracy of additively manufactured metal frameworks were 
all investigated in the literature. The mechanical properties of 
the printed Cr-Co copings were found to be greater than those 
produced with milling or conventional techniques (42). Regard-
ing the discrepancy values and dimensional accuracy, Akçin et 
al. (43) have found that regardless of unit number, implant-sup-
ported frameworks fabricated with SLM technique had similar 
values to the ones fabricated with casting technique and better 
values than the milled ones. The use of AM to produce metal 
frameworks for removable partial dentures and for complete 
dentures has become a useful alternative to the milling and con-
ventional casting techniques as it produces effective prostheses 
with acceptable clinical results (44, 45). As for implant-support-
ed denture frameworks, several studies have revealed the prac-
ticality of AM methods in producing frameworks that have low 
misfit values and favourable outcomes (46).

Fabrication of Full-Ceramic Fixed Prostheses
The widespread use of ceramic materials in the dental practice 
can be attributed to a specific set of features that they possess 
such as excellent biocompatibility, chemical stability, decent me-
chanical properties, and high aesthetics (Figure 4). However, the 
brittle nature of ceramics dictates a very strict control over the 
manufacturing process to acquire dental pieces with convenient 
mechanical properties. It is because of such properties that ce-
ramics were only lately introduced into additive manufacturing. 
The high melting point, development of different phases in such 
high temperatures, and the formation of cracks during the cool-
ing stage due to thermal shocks are all factors that increase the 
difficulty of processing ceramics through additive techniques (5, 
11). The current techniques used for the additive manufacturing 
of zirconia are material extrusion/jetting and stereolithography 
for the production of a green body which will be subjected later 
to post-processing and sintering (5). It has been demonstrated 
in the literature that by using the aforementioned methods, it is 
possible to produce zirconia parts with post-sintering densities 
(ranging between 96.9% and 99%), high dimensional accuracy, 
and similar mechanical properties to conventionally-manufac-
tured zirconia (11). Problems like anisotropic roughness can be 
addressed with post-polishing. However, complications like 
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clogged nozzles that can produce process-related defects, and 
high abrasion of the machine components are still a cause for 
concern (47). 

In the literature, the rapid manufacturing of alumina ceramics 
has also been examined. Through techniques like FDM, it is pos-
sible to print alumina parts with up to 99% density, homogenous 
microstructure, and improved mechanical properties. Methods 
like vacuum infiltration can be used on the green bodies to im-
prove density and strength (48). Dehurtevent et al. (49) have 
conducted a study that compared stereolithography-manu-
factured alumina ceramics to the subtractive-manufactured 
ones. The results indicated the possibility of printing alumina 
with anisotropic shrinkage, density, and flexural strength sim-
ilar to those of a subtractive-manufactured ceramic. Wilkes et 
al. (50) were able to manufacture objects from a mixture con-
taining 41.5 wt.% zirconia and 58.5 wt.% alumina by using SLM 
technology. The produced models had good mechanical prop-
erties and density percentage of almost 100% without the need 
for any post-processing or sintering. However, they also pointed 
out some challenges that must be addressed including thermal 
stresses and surface roughness. 

CONCLUSION
AM technology started a new era in the rapid fabrication of 
net-shaped products by automating stages. As evidenced by 
the above-mentioned studies, different approaches and differ-
ent biomaterials have been introduced for precise fabrication 
of complex-shaped individualized patterns and prototypes with 
superior print quality in the layer-by-layer manner. 

Currently, with the help of this cost-effective innovation in which 
the amount of residual material is negligible, elaborate dental 
crowns, removable dentures, surgical guides, individualized im-
plants, custom impression trays, and anatomical models can 
be manufactured. However, scientific documentation regard-
ing these systems is somewhat scarce and further studies are 
needed. 

The upcoming trends for practitioners will be the use of 
AM-manufactured root-analogue implants that can be insert-
ed immediately after tooth-extraction and the milling of all res-
torations (especially zirconia-based ones) by in-house CAD/
CAM centres.
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